返回列表 发帖

手植记:最稀缺仅有的4种原生态食材

手植记:最稀缺仅有的4种原生态食材

  最稀缺仅有的4种原生态食材
7 {$ m$ h( ]1 y! f6 z2 ~" |& v% u- @! Q) K7 ~2 x: U. R4 g/ r
  《舌尖上的中国2》热播,引得饕餮客们食指大动的同时,也引发人们对“原生态”食物的热捧——土榨菜籽油、深山野蜂蜜制成的酥油蜂蜜……各种带着浓浓乡味的食材更获赞“最健康”,甚至直接带旺了各类产地直销的“原生态”食品的网购潮。
, ^. b1 D% f; O+ _! w
! A0 L+ D$ T9 |: \) s5 W4 m  在淘宝上有一家店铺叫:手植记。他们发起了一个全国探寻原生态食材的活动:手植之旅,为生活寻找原生态食材。作为美食编辑的我,通过官方的400电话联系到了手植之旅的负责人.通过和负责人的沟通,彻彻底底了解了一下“原生态”。如何定义原生态,让我们通过以下几点来看看:5 }5 h9 ^/ `+ E+ l7 Q0 K

4 J( k" y# C+ `$ c/ G% h4 [7 e  用地理位置产物来定义的“原生态”几乎没有原生态之说3 H# h8 Y" \' _8 `( U! ?
% ]8 _8 W* i1 v+ Z
  特有的某地理位置产物,地处长江边,地形和水位,降水和日照,用这样的关键词包装出太多的“原生态”食材。其实在理论上讲,确实是有“地理位置产物”因特殊的土壤环境出土的食材其味道就是最棒的。但往往追根到底,确发现那些特殊的环境产量是少之又少。过度的商业包装,任何地方的食材都被过度到这个“地理位置产物”的标签上。各大超市,各大网站,加上我们庞大的生活消费群体,那区区几亩田地根本没有这么大的产量。9 T2 F0 B/ t* T- X, j
0 T$ y# S: j1 Y  G
  用特产特有来定义的“原生态”几乎断绝( j, c& h  N1 l8 J# G' x7 s6 Z
" m4 T- f2 i' F
  我们总是习惯到达过某个地方,而采购“特产”带给朋友送去最真挚的祝福。送健康,是我们注重“养生”这个群体运动的产物。食材被加以健康又被过多的“特产”包装。手植之旅走过的地方,挨家有户遍寻问其“特产”,有的略有所知,有的根本不知道他们当地仅有此“神仙之食”。通过翻书和网络搜索,某些“特产”确实有记载,但随着人民生活水平的提高,几乎已经不再生产或者种植一些不能保证经济收入的“特产”食物。, A; u0 K& W% m0 b# A
" F1 y, w" K& c( w8 `" K
  包装“农民”形象就是原生态食材之说支撑度不够
6 b3 _0 i/ B2 V6 Q, [0 ^$ T2 T: y  l: l4 I7 ~* N
  一身灰色的中山装加一除草的锄头,市场上充斥着太多用“农民”形象包装而成的纯天然,健康等的“原生态”食材。通过手植之旅的每一站的实地考察,那些本土确实用“农家施肥”而保持几乎近似野生生长的庄稼,根本就很难进入市场,只能够满足当地农民3口之家的食用。大面积的田地,全都为了生活改种产量大利润高的农作物。经济的快速发展,“农民”的生活也已经节奏加快,社会改变着我们,社会侵蚀了那本有的“原生态”。
' r0 U4 g5 S/ R/ @: h( L: J( h7 ?  \
  原生态食材依靠自然生长,几乎近似野生生长。实在是遇到恶劣的干旱天气或是虫灾,这个时候适当的人为参与是为了保证其产量。在整个种植过程中,无法过多的参与其作物生长,只能让他适应环境而生存的食材,其实已经很少,和动物的灭绝一样,食材也因稀缺频临灭绝。
( _' k  R* [+ o3 i! D3 {9 X* [; t9 Z$ {: Q
  陈集西施种子山药即将灭绝的真原生态食材: {- j6 z+ S% G, K. a
# |$ q8 F% o$ J( r. D, k& W, T
  种植西施种子山药的土地需要在5年前开始培育,也就是说种过西施种子山药的土地需要空5年以上不能种植其他任何农作物,土地已经无营养,只有用5年的时间培育土地,而后再第六年种植西施种子山药或其他农作物。因特殊的无性繁殖,不结豆,只能用根茎繁殖,所以种植面积难以扩大,让其珍贵无比。
7 \) h: n' J+ v  t3 ?. [" S2 }% Q' p0 @8 c
  对土地的伤害要5年恢复,西施种子山药整个菏泽不足百亩,频临灭绝。" b6 p9 ~; B. i# _5 I: M* V

7 O# F) l, F: B7 W' z, W1 H  沂蒙椿树沟松菇纯天然的食材% `: P5 K, D/ {9 b* V
& s( z# q$ F6 ?2 V3 n
  椿树沟一个原始的村落,上山进村需要延山路驱车2个小时,然后再步行1个小时。满山的松树环保着一个小村落,十几户人家。因为没有太多的商业用地,所以采取野生生长的松菇成了山里村民最基本的经济来源。
$ ^  U# Y" V+ [2 L. P1 i: A9 l
# _: I4 d5 t0 _4 f5 |  松菇,除具备一般蘑菇生长条件外,还必须与松树生长在一起,与松树根共生,其生长环境为海拔700到500米的阴坡或半阴坡的松树林中。产菇的林龄一般不低于50年。
1 O+ z) W$ i) Q. S9 G+ x( s1 \2 {; Z6 s
  莒县库山丹参近似野生的食材之一0 Y, t" a4 H' Z9 X  r
1 b$ q0 G/ U- `6 g5 C9 R) `
  库山的特殊山区环境,造就了近似野生生长的中药材丹参。
/ Z6 A. t# S3 O1 ]( W7 L- \$ e, ]; J
  苍山牛蒡和山药一样1米深土地下的食材* f4 |" V; L4 d% o8 m  q
& e7 z* L9 x- p7 z
  东洋参,学名牛蒡,又名东洋参,东洋牛鞭菜等。一千多年前日本从中国引进并改良成食物,在日本占据台湾时曾在台南要求当地农民大量种植,主要原因是台南有曾文溪畔松沙土质、北回归线气候加上有名阿里山延脉造就其当地牛蒡得天独厚的珍贵性,台湾已作为蔬菜食用多年,有牛蒡发祥地之称,中国大陆则以山东临沂苍山庄坞为最。
4 `2 s* _3 \  [, y: ~4 `- v: ]5 @! X6 d, C$ n: e6 w; U5 Y
  手植记的负责人最后给我说:真正的原生态食材是少之又少,农耕不易,食材珍惜,请尊重这些即将消失的原生态食材。* ]+ K  g7 T2 @9 {) T9 D- R
  b: y8 k  Y6 ^2 c, ~8 z
手植记
4 k# ^; o% d" w& x2 R. Y我们快乐&精神食粮
9 R1 k) J' [" o8 `! O' }7 U, f$ S2 X3 a为生活寻找原生态食材

Contents* Y/ L3 o: T! I! U
Preface ix
, A0 D; w3 ?% P. W( G' e; tI BASIC MECHANICS 1
8 i' a8 |1 Z# P% l1 Particle Kinematics 3! m) f# A. d, ]2 h8 y7 Y  ~( k% u
1.1 Particle Position Description 3
5 s" x+ M  L1 Z8 t- U8 K1.1.1 Basic Geometry 3
# e6 |( W0 i' M6 X1 Q0 |3 u1.1.2 Cylindrical and Spherical Coordinate Systems 6
2 ?  F) }8 d  d; p- f1.2 Vector Di erentiation 8& X! I! O0 `) B/ V. q3 h" v8 M
1.2.1 Angular Velocity Vector 8% X- X0 i3 ^2 k: O6 F; [7 y
1.2.2 Rotation about a Fixed Axis 10& s; p. Z0 K5 Z- i: M, Q
1.2.3 Transport Theorem 11
3 p; R% f5 ?) R' F% ~5 B& T' M! l9 T/ _1.2.4 Particle Kinematics with Moving Frames 15
. `! z# y8 W+ H& }2 Q7 }+ V1 D2 Newtonian Mechanics 25
0 ^- o) L, Y' q4 U' x/ ?# |2.1 Newton's Laws 25
3 j/ y$ g3 a" I/ W# C6 l2.2 Single Particle Dynamics 29. G% g; P; A- s1 [
2.2.1 Constant Force 29
, d1 e1 C, a3 E0 B  L& z0 Q4 c, I2.2.2 Time-Varying Force 32. p4 l" D- |/ f; v( A
2.2.3 Kinetic Energy 34
" R! u; k. y+ H7 {% q6 P7 V2.2.4 Linear Momentum 350 I4 }/ X7 j4 h7 X, _  J: i
2.2.5 Angular Momentum 35
' m6 A4 f/ V! ]  R2.3 Dynamics of a System of Particles 38
# ^' j6 {. p' {( v" @- h+ a2.3.1 Equations of Motion 38
3 y3 S, |' C  Y2 s5 l5 A2.3.2 Kinetic Energy 41. C: ]: r, `; q- j
2.3.3 Linear Momentum 43+ x- l! z# {, o8 Q! Z* F
2.3.4 Angular Momentum 45
3 i! m  F, z& Q  ~" H! l2.4 Dynamics of a Continuous System 47
3 Q5 r3 W1 {* l4 ?6 _3 @2.4.1 Equations of Motion 47& B4 y0 q' J$ s4 W8 m! g
2.4.2 Kinetic Energy 496 Z4 F% z$ S$ H
2.4.3 Linear Momentum 50
5 z+ d+ O6 L  T! V- I& t& R5 Z2.4.4 Angular Momentum 51" w$ J% w% i" C/ G" l8 T: I$ m
2.5 The Rocket Problem 52. [7 a9 f+ E2 Y
iii
7 ^# A1 @: u1 E0 o; `" g* Biv CONTENTS
' v8 y; o' Z8 h2 ?+ y! @3 Rigid Body Kinematics 63
% N; x; f0 \& |' T3.1 Direction Cosine Matrix 64  b6 \" [. L# u% s8 Q/ W
3.2 Euler Angles 70' p: S) O  ^- L) d
3.3 Principal Rotation Vector 78' J3 E" A. h4 `1 Q. }/ X
3.4 Euler Parameters 85; v8 q( u# a2 {+ E+ O
3.5 Classical Rodrigues Parameters 91
8 Z! U* b4 [1 M$ o. ~3.6 Modi ed Rodrigues Parameters 96
5 |" P$ t7 H7 F+ A4 N% ~4 b: P3.7 Other Attitude Parameters 1035 x. }4 A9 m; Q* d5 f0 E
3.7.1 Stereographic Orientation Parameters 103
- d$ E( Q* `( _% U3.7.2 Higher Order Rodrigues Parameters 105
7 j  l/ m3 [' @! C4 v" _3.7.3 The (w,z) Coordinates 1060 n& q. _+ @9 z* F
3.7.4 Cayley-Klein Parameters 107' M& S: `  t8 l( L
3.8 Homogeneous Transformations 107; ^8 c# o; K2 b  i0 z* {# N+ k
4 Eulerian Mechanics 115
" v3 B+ {* K; c3 U1 f2 ?! V( G4.1 Rigid Body Dynamics 115  k. p) w$ }( o  j) g8 N7 M: q8 I0 [
4.1.1 Angular Momentum 115
6 p/ G& t5 p7 O3 g) t3 }  c: @. \4.1.2 Inertia Matrix Properties 118
3 l7 G. H! X5 S% D2 h4.1.3 Euler's Rotational Equations of Motion 123; @& O% r: t5 D  ^, G; P+ w
4.1.4 Kinetic Energy 124) v3 c, y% x- {: e
4.2 Torque-Free Rigid Body Rotation 128
% N. X2 s# ^8 Y9 S- ?4 {4.2.1 Energy and Momentum Integrals 128
' S& l3 W: ]+ l/ O1 ^- o4.2.2 General Free Rigid Body Motion 133  o6 @3 ?# y: d1 n
4.2.3 Axisymmetric Rigid Body Motion 135
) J* _% a2 z- N4 o4.3 Momentum Exchange Devices 1377 A. W( L: y/ K6 m6 J2 t* N
4.3.1 Spacecraft with Single VSCMG 138* @3 J! O; |, q+ _! Q
4.3.2 Spacecraft with Multiple VSCMGs 143
+ Y: {# ~: d3 X# J8 {4.4 Gravity Gradient Satellite 145
. L$ A3 Z5 f  D3 l6 v4.4.1 Gravity Gradient Torque 145
* f8 i& G7 O* r& ?0 h4.4.2 Rotational - Translational Motion Coupling 148: H4 V5 n1 c! A+ T
4.4.3 Small Departure Motion about Equilibrium Attitudes 149/ x  s3 ~& X  W
5 Generalized Methods of Analytical Dynamics 1593 O$ e9 ^$ o8 s% F0 {  K+ X7 p4 ?
5.1 Generalized Coordinates 159: q1 K& |2 j: J  E9 _
5.2 D'Alembert's Principle 162
" y; l( Y* w  T  {6 M9 k" e9 r! o6 e5.2.1 Virtual Displacements and Virtual Work 163  P& H0 \1 n, K8 Z& E
5.2.2 Classical Developments of D'Alembert's Principle 164
% H: G  n& r' T3 l; b5.2.3 Holonomic Constraints 170
8 P1 G0 I& I& U9 }) W# R% D5.2.4 Newtonian Constrained Dynamics of N Particles 1776 M# B8 z( T9 r' I. R
5.2.5 Lagrange Multiplier Rule for Constrained Optimization 178. N0 ]# K# [5 m$ y$ q2 Y: F, k( {
5.3 Lagrangian Dynamics 182
" {& V8 z# \3 e5.3.1 Minimal Coordinate Systems and Unconstrained Motion 183
/ u9 T7 ^2 C; q; c: w8 B% B" G5.3.2 Lagrange's Equations for Conservative Forces 187& f' `; A* n' E' f- N% I
5.3.3 Redundant Coordinate Systems and Constrained Motion 190
+ d) v- B  Y8 e  P5 u1 l7 P5.3.4 Vector-Matrix Form of the Lagrangian Equations of Motion195% k, l) H4 `* G) K, w
CONTENTS v
* c; l8 H6 T2 l6 Advanced Methods of Analytical Dynamics 203* ^( m- E5 m1 y+ Z. e1 o$ I. N8 l
6.1 The Hamiltonian Function 203
- E$ n# ~- U- [* c7 S6.1.1 Some Special Properties of The Hamiltonian 203  [9 E8 P+ r$ H3 k$ H5 y7 t
6.1.2 Relationship of the Hamiltonian to Total Energy andWork* [" @" Q: f  Q/ [! H& M1 Q8 V
Energy 2035 X$ H6 K/ x4 A* Z. G
6.1.3 Hamilton's Canonical Equations 203
) y: A  p" Q) U4 Z2 i& `6.1.4 Hamilton's Principal Function and the Hamilton-Jacobi
. p/ R. |* m" S1 ZEquation 203
  j/ R' Y0 B7 ]6.2 Hamilton's Principles 203
0 E1 S! e3 q* v! M6.2.1 Variational Calculus Fundamentals 204% A% o# y$ V$ v5 x5 o. b9 N2 D! w' X
6.2.2 Path Variations versus Virtual Displacements 204
; x/ }% m: y& }6.2.3 Hamilton's Principles from D'Alembert's Principle 204
4 Y/ r! N5 w1 H8 l7 d/ G7 ~8 _  K6.3 Dynamics of Distributed Parameter Systems 2043 ~$ r& ~2 _  I: F3 X: @* f
6.3.1 Elementary DPS: Newton-Euler Methods 2041 P+ W9 N, G3 n; y
6.3.2 Energy Functions for Elastic Rods and Beams 204( {( S/ c1 \* W* s
6.3.3 Hamilton's Principle Applied for DPS 204
: P; n- i' |' }6 o- U# U/ D- S% {6.3.4 Generalized Lagrange's Equations for Multi-Body DPS 204( ~7 o, t5 q2 `5 H. B
7 Nonlinear Spacecraft Stability and Control 205
# X3 f( M7 S, I8 D8 O  o7.1 Nonlinear Stability Analysis 206
1 ]+ A' n: J0 Z1 {7.1.1 Stability De nitions 2063 ~/ M6 U9 P: w8 `
7.1.2 Linearization of Dynamical Systems 210
2 W6 w* t( e, \2 w" X  k7.1.3 Lyapunov's Direct Method 212
3 Z8 y# J8 X- o: k1 y7.2 Generating Lyapunov Functions 219
; U/ h; O" \$ \0 u7.2.1 Elemental Velocity-Based Lyapunov Functions 221( |# H' i) }2 j4 U
7.2.2 Elemental Position-Based Lyapunov Functions 227
. x$ z" z  w' u7.3 Nonlinear Feedback Control Laws 2330 d0 ~! a$ t1 z- X( G
7.3.1 Unconstrained Control Law 2337 R$ v, i' r0 Z! [( x- G+ \& r# b
7.3.2 Asymptotic Stability Analysis 236
7 }$ `5 D9 j) u& k: P5 R7.3.3 Feedback Gain Selection 242
5 {* l% b* ~6 V$ @1 U2 Z7 r7.4 Lyapunov Optimal Control Laws 247; j0 V+ y# v: g7 y
7.5 Linear Closed-Loop Dynamics 253! y: W+ ~' H) E, r3 f4 x
7.6 Reaction Wheel Control Devices 258
* A6 ?& L; t  a5 V% ]$ j& C( u1 I6 j7.7 Variable Speed Control Moment Gyroscopes 260
, u6 l$ x$ y9 |$ ^7.7.1 Control Law 2613 i& r0 U) e$ t( ^" [* w, u
7.7.2 Velocity Based Steering Law 264
/ k& F4 I% a8 l0 J7 _7.7.3 VSCMG Null Motion 269
$ `7 T! C0 r' \; qII CELESTIAL MECHANICS 2831 L( p  u- f9 J/ }, k
8 Classical Two-Body Problem 285
' c/ t! Z7 n; _2 P. Y$ g. ^8.1 Geometry of Conic Sections 286
; P3 s# R- ~: ]3 E8.2 Relative Two-Body Equations of Motion 294
- S: F; K: E$ w8.3 Fundamental Integrals 296
# o  [4 s/ A" x8.3.1 Conservation of Angular Momentum 2965 I+ U6 e( ]. d# N; d
vi CONTENTS. n) [' q3 {+ Z: b
8.3.2 The Eccentricity Vector Integral 297+ u6 I; I4 x7 L9 {) f- g& X
8.3.3 Conservation of Energy 300# g6 {3 T' t1 R2 r3 i. o
8.4 Classical Solutions 306
* l) u& C4 u$ f3 u1 j: o; L8.4.1 Kepler's Equation 307' z1 H# I" ~% q
8.4.2 Orbit Elements 310
* z8 R% Q0 K& ]1 m5 m6 U3 l8.4.3 Lagrange/Gibbs F and G Solution 316, R( P8 ]9 F1 C: w* U) j
9 Restricted Three-Body Problem 325& g; C! j, k! N2 ?( l0 \/ M% J
9.1 Lagrange's Three-Body Solution 326
/ Q) B& ~/ v) a8 v9.1.1 General Conic Solutions 326! ]4 [: `$ T6 R* R
9.1.2 Circular Orbits 335
# A. t) d: N0 C& r. ?9.2 Circular Restricted Three-Body Problem 339
* z% d4 b2 P$ l+ Z6 s* ?, p9.2.1 Jacobi Integral 341- h/ l' w) Y. O* N/ s6 v$ c; ]
9.2.2 Zero Relative Velocity Surfaces 346
* ]! j; {" U# ^# f1 b9.2.3 Lagrange Libration Point Stability 353
5 d6 C$ ^$ `- {# M5 p9.3 Periodic Stationary Orbits 357" J' h6 K7 b  \& e; L6 o
9.4 The Disturbing Function 358
; D, {; q+ W; A8 }10 Gravitational Potential Field Models 3650 V7 C) v7 h/ O2 }+ z
10.1 Gravitational Potential of Finite Bodies 366
6 @/ }" S4 E; t. I& f10.2 MacCullagh's Approximation 3691 h  G; N% b/ Q* @. ^! J6 g
10.3 Spherical Harmonic Gravity Potential 372
4 Y1 d1 |5 K7 `: z10.4 Multi-Body Gravitational Acceleration 381
+ K# w% o: y6 N10.5 Spheres of Gravitational In
8 J9 k, N% C, A) Huence 383
1 b7 o# r8 J: E8 E+ L11 Perturbation Methods 389
, H* f& u6 g9 a0 }: [/ p11.1 Encke's Method 390
4 K8 I8 C3 E" X( ~1 E11.2 Variation of Parameters 392
( `: l, i: t) N3 Y* r/ t7 Z, G11.2.1 General Methodology 393) A. {2 Q6 S4 t. ^% m: B, ]/ Q8 L
11.2.2 Lagrangian Brackets 395( t  o4 E1 T5 w& S" l% L# [5 v% k! [
11.2.3 Lagrange's Planetary Equations 401
. ^6 y& T' K5 m' X3 d$ Z6 u11.2.4 Poisson Brackets 408
1 u& h5 Z1 `. l! J! a11.2.5 Gauss' Variational Equations 415) v! d4 j$ K/ o( s$ C4 b8 C
11.3 State Transition and Sensitivity Matrix 417
* O9 u' |# M; G0 j8 l; ?/ @' W7 _11.3.1 Linear Dynamic Systems 418
  ^! s; M. t! ?% v11.3.2 Nonlinear Dynamic Systems 422
/ M0 Q* m; a3 Q2 K6 [) x; c9 V11.3.3 Symplectic State Transition Matrix 425! f# u* ]5 V$ u" x
11.3.4 State Transition Matrix of Keplerian Motion 427
+ j% z* L5 Q& H8 H. M0 c% e7 L' G12 Transfer Orbits 433
) W2 h- P/ o8 I4 P# w3 V1 N4 j12.1 Minimum Energy Orbit 4342 e+ z9 j; }8 v, G* Z
12.2 The Hohmann Transfer Orbit 4375 }3 d! _5 U5 J2 p. M
12.3 Lambert's Problem 442% l: x( K1 P# o) @+ |* i' t. @
12.3.1 General Problem Solution 443& B5 l' W! K2 M9 s* X+ y' w
12.3.2 Elegant Velocity Properties 4479 L, u( Y8 P0 l! f$ g2 U# @
12.4 Rotating the Orbit Plane 450
  P" _0 B' C7 h  o4 j( jCONTENTS vii
) U" Y# i4 e( V  m12.5 Patched-Conic Orbit Solution 4550 a; y, p0 W) d% X
12.5.1 Establishing the Heliocentric Departure Velocity 457/ E0 P; x4 f' \/ J
12.5.2 Escaping the Departure Planet's Sphere of In
. t5 W; p% B0 suence 4613 _5 B' B$ p/ X+ v4 K7 D$ p
12.5.3 Enter the Target Planet's Sphere of In, a; U1 @0 U3 ~
uence 467
% Z* k) |2 P8 v; b7 a12.5.4 Planetary Fly-By's 472  I: O/ V; N2 u, a$ o8 i, W8 r$ X
13 Spacecraft Formation Flying 477
' D! q, }1 F5 v+ r: X$ m13.1 General Relative Orbit Description 479
# u7 T* e) b% U5 d# o7 I/ Q) P& {13.2 Cartesian Coordinate Description 4801 i9 x2 ~" e% F2 G
13.2.1 Clohessy-Wiltshire Equations 481: h; R& q5 Y- s: K9 s9 I
13.2.2 Closed Relative Orbits in the Hill Reference Frame 484. h9 m8 z9 a) b+ k1 Y
13.3 Orbit Element Di erence Description 487
: S$ z: s# w7 H5 m5 @8 C/ X- N9 j13.3.1 Linear Mapping Between Hill Frame Coordinates and Orbit' ~0 i4 i8 `- O) P
Element Di erences 4896 }6 X7 G0 e0 P: |- [
13.3.2 Bounded Relative Motion Constraint 495
+ _& }3 e& M$ @# C7 Q13.4 Relative Motion State Transition Matrix 497( i+ w3 F: E+ V2 ~& a, |3 k* q  @, a5 Q
13.5 Linearized Relative Orbit Motion 502  C! f! J! g! m, \
13.5.1 General Elliptic Orbits 502
' H/ Y5 b  _4 d" b5 z13.5.2 Chief Orbits with Small Eccentricity 506! \5 T' r7 e! D; ^( `; a) c2 j' d5 Q
13.5.3 Near-Circular Chief Orbit 5089 g: {: [& z6 g. U$ t
13.6 J2-Invariant Relative Orbits 511; w3 ^/ P( w& Q! c! @
13.6.1 Ideal Constraints 5127 ]$ R4 \4 |3 L+ X: _
13.6.2 Energy Levels between J2-Invariant Relative Orbits 5198 N' w  `) h0 X
13.6.3 Constraint Relaxation Near Polar Orbits 520
: Q7 n, }$ I" u& x/ n' N) W13.6.4 Near-Circular Chief Orbit 524
! w  C% {4 p9 G1 D13.6.5 Relative Argument of Perigee and Mean Anomaly Drift 526# c* C# v" n8 N( L8 }. n
13.6.6 Fuel Consumption Prediction 528
* [) t7 L7 e9 ^8 B  k  `13.7 Relative Orbit Control Methods 531" R+ b8 X+ p, N' d2 e, A
13.7.1 Mean Orbit Element Continuous Feedback Control Laws 532) z6 P" z: L; g8 Z% q, M$ m
13.7.2 Cartesian Coordinate Continuous Feedback Control Law 539. b  o% J* W+ \0 z5 ?
13.7.3 Impulsive Feedback Control Law 542% O7 {; y$ j) g
13.7.4 Hybrid Feedback Control Law 546
! |. m/ ^# R, F7 U' _2 d+ M; G9 Q1 O: |( sAPPENDIX A 5536 s9 `% s" C) p: F$ y. g( w0 d
APPENDIX B 557
( ]/ J# @0 K4 O; q7 oAPPENDIX C 559$ g1 \: s) J7 N' v8 g
APPENDIX D 563, V4 J% Z, j$ T. I" [# K+ x- N" E
APPENDIX E 565/ ^4 Q! s- ~. ]5 F1 y0 Q8 Z6 i
APPENDIX F 569$ a) a' S8 S+ R5 g5 H
APPENDIX G 573
7 S( H! ]/ _3 O  p8 q/ hviii CONTENTS
; t( a1 J/ V; S1 y2 j+ [Preface
8 x& E- s3 r; G2 K$ C# ^5 ^
; e( K2 G" a7 o1 xpx益萍, e0 k4 [& d( U6 N. t7 j
: k7 Z! z$ r$ u  e8 N
' ^% t5 j1 z) x# }* C. _5 x: [7 i
7 v& R% ~, h8 p& ~

8 d4 O4 ^3 l7 R: }  K
: L4 T* y9 x+ F5 L+ a0 O/ D2 i3 G4 p联系QQ:5267816183 F: b+ z% x6 e4 W  Q6 Z  x
  X& K1 I( t1 _
淘宝旺旺:跟朝流走. ^6 V- j: `% V" p1 x

4 Q! m9 w8 v4 ~* ^' B. h* Z有需要的欢迎联系!专业代购电子书7 X% c0 @3 g! ~$ M' U2 `! G
; o& y6 u1 t" w" B+ D9 ^
. A' H6 U3 s) W( B' T3 z
5 ^/ U5 t+ W' A5 K4 `
ebook 英文电子书代购

TOP

返回列表